كيفية استخدام DSP في الاتصالات البصرية المتماسكة?

لقد أدت ولادة النقل المتماسك إلى تحويل شبكات النقل الضوئية ، وأصبح إدخالها لمعالجات الإشارات الرقمية الإلكترونية (DSP) محركًا رئيسيًا لزيادة قدرة شبكات MAN وشبكات WDM طويلة المدى.

في الماضي ، بينما كانت مكاسب قدرة الطول الموجي تعتمد على تطور سرعة مصادر الضوء والمعدِّلات وأجهزة الكشف ، أصبح DSP وما يرتبط بها من تشفير التعديل المعقد الذي ينفذه المحرك الأساسي لزيادة سعة الشبكة.

مع سرعات نقل بصرية تصل إلى أكثر 400 Gbit / s لكل موجة ، تفتح الأهمية المتزايدة لـ DSP المتماسك إمكانية حدوث تغيير كبير لموردي البصريات والمشهد الصناعي.

 

ما هو DSP؟ المبدأ والتكوين

DSP هي تقنية معالجة الإشارات الرقمية ، تشير شريحة DSP إلى الشريحة التي يمكنها تنفيذ تقنية معالجة الإشارات الرقمية ، وهي معالج دقيق سريع وقوي ، فريد من نوعه لأنه يمكنه معالجة المعلومات على الفور. يمكن استخدام هيكل Harvard الداخلي لشريحة DSP مع برنامج وبيانات منفصلة ، مع مضاعف أجهزة خاص ، لتنفيذ مجموعة متنوعة من خوارزميات معالجة الإشارات الرقمية بسرعة. في سياق العصر الرقمي اليوم ، أصبح DSP جهازًا أساسيًا للاتصالات وأجهزة الكمبيوتر والإلكترونيات الاستهلاكية وغيرها من المجالات.

 

مبدأ وحدة DSP

تعالج وحدة DSP الإشارتين الكهربائيتين الاستقطابيتين اللتين تم الحصول عليهما من خرج جهاز الاستقبال المتماسك وتكمل استعادة الإشارة الأصلية بعد معالجة الوحدات الوظيفية كما هو موضح أدناه. تتمثل المهمة الرئيسية لـ DSP في أخذ عينات من الإشارة التناظرية ، وتكميمها ، وتحويل الإشارة التناظرية إلى إشارة رقمية ، وإزالة التشتت اللوني وتشتت وضع الاستقطاب في رابط الألياف البصرية ، وإكمال تردد الموجة الحاملة offتعيين التقدير ، واستعادة المرحلة الحاملة ، والوظائف الأخرى ، DSP والتحليل الكامل للهندسة المعمارية التناظرية.

مخطط كتلة وظيفي لوحدة DSP

مخطط الكتلة الوظيفية لوحدة DSP

 

تكوين وحدة DSP

مزامنة الساعة ووحدة ADC

يتم استرداد الساعات الرقمية بشكل عام باستخدام مرشحات الاستيفاء ، حيث أن ساعة الرمز (T) وساعة أخذ العينات ADC (Ts) مستقلتان عن بعضهما البعض ، لذلك من أجل جعل ساعة رمز الإرسال (T) وساعة أخذ عينات المستقبل المعدلة (Ti) ) التزامن ، من الضروري تعديل لحظة أخذ عينات رمز المستقبل.

يعد استخدام مرشحات الاستيفاء كخوارزمية رئيسية بمثابة استرداد أكثر نضجًا لتقنية الساعة الرقمية ، من أجل جعل إخراج المستقبل الرقمي نموذج التبني الصحيح (متزامن مع ساعة الرمز) ، أي ضبط لحظة أخذ عينات جهاز الاستقبال ، عادةً باستخدام خوارزمية تزامن ساعة رمز بنية الحلقة المفتوحة.

 

وحدة إزالة تعدد الإرسال معادلة واستقطاب

للتعامل مع التداخل بين الإشارات المستقطبة وغير المثالية للقناة ، من الضروري تطبيق تقنيات الاستقطاب وإزالة تعدد الإرسال والمعادلة لمعالجة الإشارة. أولاً ، يتم تنفيذ وظيفة إزالة تعدد إرسال الاستقطاب باستخدام مرشحات منظمة ، مصممة لمواجهة التداخل بين الإشارات المستقطبة ، والذي يحدث بسبب درجة معينة من الانحراف الناتج عن الإشارات المستقطبة الفردية أثناء الإرسال. بالإضافة إلى ذلك ، تم تصميم تقنية التكافؤ التكيفية للتعامل مع الأضرار التي تحدث أثناء نقل وصلة الألياف البصرية بسبب خصائص القناة غير المثالية ، والضرر الخطي الناجم أساسًا عن تشتت وضع الاستقطاب من الدرجة الأولى والألياف.

 

تردد offتعيين التقدير واسترجاع المرحلة الوحدة النمطية

من أجل إزالة تشكيل الإشارة المستقبلة بشكل صحيح ، التردد offيجب القيام بتقدير مجموعة إشارة الموجة الحاملة. السبب الرئيسي هو أن الإشارة المستقبلة سيكون لها بعد تردد عن مصدر التذبذب المحلي في المستقبل البصري المتماسك بسبب غياب التحكم في التغذية المرتدة لإشارة التذبذب المحلي ، وبالتالي فإن طريقة التردد offيجب تنفيذ تقدير المجموعة في جهاز الاستقبال.

 

لماذا تُستخدم تقنية DSP للاتصال البصري المتماسك؟

يتيح الجمع بين الاكتشاف المتماسك وتكنولوجيا DSP تزامن طور الموجة الحاملة وتتبع الاستقطاب في المجال الكهربائي ، مما يؤدي إلى إزالة عائقين رئيسيين أمام الاستقبال المتماسك التقليدي ؛ تتمتع أجهزة الاستقبال المتماسكة القائمة على DSP بهيكل بسيط وشفافية في الأجهزة ، والتي يمكن أن تعوض عن أضرار النقل المختلفة في المجال الكهربائي ، وتبسيط روابط النقل وتقليل تكاليف النقل ؛ ودعم تشكيل الأشعة M وتعدد الاستقطاب لتحقيق نقل طيفي عالي الكفاءة.

 

ما هي عيوب استخدام تقنية DSP وكيف يتم حلها؟

نظرًا لأن DSP يقدم DAC / ADC والخوارزميات ، يجب أن يكون استهلاكه للطاقة أعلى من رقائق CDR التقليدية القائمة على التكنولوجيا التناظرية. يعد هذا تحديًا كبيرًا لكل من التصميم الحراري للوحدة النمطية ولوحة التبديل المستقبلية. لذلك ، أصبحت تقنيات إدارة الطاقة والتصميم منخفضة الطاقة أيضًا موضوعًا ساخنًا للبحث الحالي. في التشغيل الفعلي ، يكون النظام في حالة خمول أو حمولة منخفضة خلال جزء كبير من وقت التشغيل ، ويمكن تجنب الطاقة الإضافية التي يستهلكها النظام خلال هذه الفترات الزمنية من خلال تدابير التصميم منخفضة الطاقة.

تتمثل نقطة الدخول الرئيسية لتصميم الطاقة المنخفضة في تحقيق تشغيل منخفض الطاقة للنظام عن طريق ضبط أداء النظام بشكل معقول وفقًا للحمل الفعلي لتشغيل النظام ، في إطار فرضية ضمان إكمال مهام المعالجة على النحو المطلوب . لتحقيق هذا الهدف ، من الضروري تنفيذ آلية تشغيل موثوقة منخفضة الأداء في النظام ، ومراقبة كل مكون من مكونات النظام بشكل فعال واعتماد استراتيجية معقولة لإدارة استهلاك طاقة النظام.

اترك تعليق

انتقل إلى الأعلى