What do the Suffixes “SR8, SR8-C, SRBD, SR4, DR4/XDR4/PLR4, FR4/LR4 and 2FR4” Stand for?

John Doe

John Doe

Answered on 7:32 am

In general, the letters refer to reach or optics technology, and the number refers to the number of optical channels:

SR8: Short Range 8. This transceiver supports 400G transmission over multimode fiber (MMF) with a maximum reach of 100 meters. It uses a MPO-16 connector and PAM4 modulation.

SR8-C: Short Range 8 Copper. This transceiver supports 400G transmission over copper cable with a maximum reach of 3 meters. It uses a QSFP-DD connector and PAM4 modulation.

SRBD: Short Range Bidirectional. This transceiver supports 400G transmission over MMF with a maximum reach of 70 meters. It uses a duplex LC connector and PAM4 modulation.

SR4: Short Range 4. This transceiver supports 400G transmission over MMF with a maximum reach of 100 meters. It uses a MPO-12 connector and PAM4 modulation.

DR4 / XDR4 / PLR4: Data Center Reach 4 / eXtended Data Center Reach 4 / Parallel Long Reach 4. These transceivers support 400G transmission over single-mode fiber (SMF) with a maximum reach of 500 meters / 2 kilometers / 10 kilometers respectively. They use a MPO-12 connector and PAM4 modulation.

FR4 / LR4: Fiber Reach 4 / Long Reach 4. These transceivers support 400G transmission over SMF with a maximum reach of 2 kilometers / 10 kilometers respectively. They use a duplex LC connector and PAM4 modulation.

2FR4: Two Fiber Reach 4. This transceiver supports 400G transmission over SMF with a maximum reach of 2 kilometers. It uses two duplex LC connectors and coherent modulation.

People Also Ask

AEC Active Cable Testing Solution – Deciphering AEC Performance Step by Step

With the continuous expansion of data centers and the increasing demand for high-performance computing, the AEC (Active Electrical Cable) has emerged as an effective high-speed, short-distance transmission solution. Major cloud service providers—such as Google, AWS, and Microsoft—have already embarked on large-scale deployments of AEC, while hardware manufacturers like Nvidia have

Why Do 400G/100G Optical Ports in Switches Require Forward Error Correction (FEC)?

Introduction Optical networks require the use of Forward Error Correction (FEC) to guarantee reliable communication. Similar to how a reader may overlook a single spelling mistake in a text but struggle when errors accumulate, digital transmissions—encoded as sequences of “0”s and “1”s—are subject to inevitable signal attenuation and bit errors.

OCP EMEA 2025: FiberMall’s 1.6T Pluggable Optical Module Based on 224G per Lane

The rapid growth of artificial intelligence (AI) and machine learning has driven a substantial demand for higher bandwidth, making the 224G per lane configuration essential. Enhanced energy efficiency is equally critical in managing the ever-increasing power requirements of data centers. With copper-based transmission reaching its physical limits, optical communication has

New H3C Unveils the S12500AI: A New Generation AI Network Solution Based on the DDC Architecture

Recently, New H3C introduced its groundbreaking lossless network solution and compute cluster switch—the H3C S12500AI—built upon the DDC (Diversity Dynamic-Connectivity) architecture. Tailored to meet the demanding requirements of scenarios involving the interconnection of tens of thousands of compute cards, this solution redefines the network architecture of intelligent computing centers. Performance

Artificial Intelligence: High-Performance Computing and High-Speed Optical Module Technology Trends

Artificial intelligence demands extraordinarily large computational power. In high-performance computing systems, there is a clear divergence in approach: scale-up systems rely on copper cable modules, while scale-out systems are increasingly dependent on optical modules. This year, detailed analyses have been conducted on copper cable modules used for scale-up applications. In

Related Articles

800g sr8 and 400g sr4

800G SR8 and 400G SR4 Optical Transceiver Modules Compatibility and Interconnection Test Report

Version Change Log Writer V0 Sample Test Cassie Test Purpose Test Objects:800G OSFP SR8/400G OSFP SR4/400G Q112 SR4. By conducting corresponding tests, the test parameters meet the relevant industry standards, and the test modules can be normally used for Nvidia (Mellanox) MQM9790 switch, Nvidia (Mellanox) ConnectX-7 network card and Nvidia (Mellanox) BlueField-3, laying a foundation for

Read More »
the-AEC-market-is-poised-for-rapid-growth-in-the-coming-years

AEC Active Cable Testing Solution – Deciphering AEC Performance Step by Step

With the continuous expansion of data centers and the increasing demand for high-performance computing, the AEC (Active Electrical Cable) has emerged as an effective high-speed, short-distance transmission solution. Major cloud service providers—such as Google, AWS, and Microsoft—have already embarked on large-scale deployments of AEC, while hardware manufacturers like Nvidia have

Read More »
link-speed

OCP EMEA 2025: FiberMall’s 1.6T Pluggable Optical Module Based on 224G per Lane

The rapid growth of artificial intelligence (AI) and machine learning has driven a substantial demand for higher bandwidth, making the 224G per lane configuration essential. Enhanced energy efficiency is equally critical in managing the ever-increasing power requirements of data centers. With copper-based transmission reaching its physical limits, optical communication has

Read More »
DDC

New H3C Unveils the S12500AI: A New Generation AI Network Solution Based on the DDC Architecture

Recently, New H3C introduced its groundbreaking lossless network solution and compute cluster switch—the H3C S12500AI—built upon the DDC (Diversity Dynamic-Connectivity) architecture. Tailored to meet the demanding requirements of scenarios involving the interconnection of tens of thousands of compute cards, this solution redefines the network architecture of intelligent computing centers. Performance

Read More »
Scale-Out-Node

Artificial Intelligence: High-Performance Computing and High-Speed Optical Module Technology Trends

Artificial intelligence demands extraordinarily large computational power. In high-performance computing systems, there is a clear divergence in approach: scale-up systems rely on copper cable modules, while scale-out systems are increasingly dependent on optical modules. This year, detailed analyses have been conducted on copper cable modules used for scale-up applications. In

Read More »

Leave a Comment

Scroll to Top