- Brian
- September 6, 2023
- 7:32 am

John Doe
Answered on 7:32 am
In general, the letters refer to reach or optics technology, and the number refers to the number of optical channels:
SR8: Short Range 8. This transceiver supports 400G transmission over multimode fiber (MMF) with a maximum reach of 100 meters. It uses a MPO-16 connector and PAM4 modulation.
SR8-C: Short Range 8 Copper. This transceiver supports 400G transmission over copper cable with a maximum reach of 3 meters. It uses a QSFP-DD connector and PAM4 modulation.
SRBD: Short Range Bidirectional. This transceiver supports 400G transmission over MMF with a maximum reach of 70 meters. It uses a duplex LC connector and PAM4 modulation.
SR4: Short Range 4. This transceiver supports 400G transmission over MMF with a maximum reach of 100 meters. It uses a MPO-12 connector and PAM4 modulation.
DR4 / XDR4 / PLR4: Data Center Reach 4 / eXtended Data Center Reach 4 / Parallel Long Reach 4. These transceivers support 400G transmission over single-mode fiber (SMF) with a maximum reach of 500 meters / 2 kilometers / 10 kilometers respectively. They use a MPO-12 connector and PAM4 modulation.
FR4 / LR4: Fiber Reach 4 / Long Reach 4. These transceivers support 400G transmission over SMF with a maximum reach of 2 kilometers / 10 kilometers respectively. They use a duplex LC connector and PAM4 modulation.
2FR4: Two Fiber Reach 4. This transceiver supports 400G transmission over SMF with a maximum reach of 2 kilometers. It uses two duplex LC connectors and coherent modulation.
People Also Ask
AEC Active Cable Testing Solution – Deciphering AEC Performance Step by Step
With the continuous expansion of data centers and the increasing demand for high-performance computing, the AEC (Active Electrical Cable) has emerged as an effective high-speed, short-distance transmission solution. Major cloud service providers—such as Google, AWS, and Microsoft—have already embarked on large-scale deployments of AEC, while hardware manufacturers like Nvidia have
Why Do 400G/100G Optical Ports in Switches Require Forward Error Correction (FEC)?
Introduction Optical networks require the use of Forward Error Correction (FEC) to guarantee reliable communication. Similar to how a reader may overlook a single spelling mistake in a text but struggle when errors accumulate, digital transmissions—encoded as sequences of “0”s and “1”s—are subject to inevitable signal attenuation and bit errors.
OCP EMEA 2025: FiberMall’s 1.6T Pluggable Optical Module Based on 224G per Lane
The rapid growth of artificial intelligence (AI) and machine learning has driven a substantial demand for higher bandwidth, making the 224G per lane configuration essential. Enhanced energy efficiency is equally critical in managing the ever-increasing power requirements of data centers. With copper-based transmission reaching its physical limits, optical communication has
OCP EMEA 2025: FiberMall Demonstrates 800G Pluggable Optical Modules with Immersion Cooling Systems
Traditional pluggable optical modules incorporate digital signal processors (DSPs) that perform full digital equalization for both electrical and optical signals. Because these DSPs are power-intensive, accounting for over 40% of total power consumption, efforts have been made in 800G and higher transceivers to reduce power usage by eliminating the DSP
New H3C Unveils the S12500AI: A New Generation AI Network Solution Based on the DDC Architecture
Recently, New H3C introduced its groundbreaking lossless network solution and compute cluster switch—the H3C S12500AI—built upon the DDC (Diversity Dynamic-Connectivity) architecture. Tailored to meet the demanding requirements of scenarios involving the interconnection of tens of thousands of compute cards, this solution redefines the network architecture of intelligent computing centers. Performance
Artificial Intelligence: High-Performance Computing and High-Speed Optical Module Technology Trends
Artificial intelligence demands extraordinarily large computational power. In high-performance computing systems, there is a clear divergence in approach: scale-up systems rely on copper cable modules, while scale-out systems are increasingly dependent on optical modules. This year, detailed analyses have been conducted on copper cable modules used for scale-up applications. In
Related Articles

800G SR8 and 400G SR4 Optical Transceiver Modules Compatibility and Interconnection Test Report
Version Change Log Writer V0 Sample Test Cassie Test Purpose Test Objects:800G OSFP SR8/400G OSFP SR4/400G Q112 SR4. By conducting corresponding tests, the test parameters meet the relevant industry standards, and the test modules can be normally used for Nvidia (Mellanox) MQM9790 switch, Nvidia (Mellanox) ConnectX-7 network card and Nvidia (Mellanox) BlueField-3, laying a foundation for

AEC Active Cable Testing Solution – Deciphering AEC Performance Step by Step
With the continuous expansion of data centers and the increasing demand for high-performance computing, the AEC (Active Electrical Cable) has emerged as an effective high-speed, short-distance transmission solution. Major cloud service providers—such as Google, AWS, and Microsoft—have already embarked on large-scale deployments of AEC, while hardware manufacturers like Nvidia have

Why Do 400G/100G Optical Ports in Switches Require Forward Error Correction (FEC)?
Introduction Optical networks require the use of Forward Error Correction (FEC) to guarantee reliable communication. Similar to how a reader may overlook a single spelling mistake in a text but struggle when errors accumulate, digital transmissions—encoded as sequences of “0”s and “1”s—are subject to inevitable signal attenuation and bit errors.

OCP EMEA 2025: FiberMall’s 1.6T Pluggable Optical Module Based on 224G per Lane
The rapid growth of artificial intelligence (AI) and machine learning has driven a substantial demand for higher bandwidth, making the 224G per lane configuration essential. Enhanced energy efficiency is equally critical in managing the ever-increasing power requirements of data centers. With copper-based transmission reaching its physical limits, optical communication has

OCP EMEA 2025: FiberMall Demonstrates 800G Pluggable Optical Modules with Immersion Cooling Systems
Traditional pluggable optical modules incorporate digital signal processors (DSPs) that perform full digital equalization for both electrical and optical signals. Because these DSPs are power-intensive, accounting for over 40% of total power consumption, efforts have been made in 800G and higher transceivers to reduce power usage by eliminating the DSP

New H3C Unveils the S12500AI: A New Generation AI Network Solution Based on the DDC Architecture
Recently, New H3C introduced its groundbreaking lossless network solution and compute cluster switch—the H3C S12500AI—built upon the DDC (Diversity Dynamic-Connectivity) architecture. Tailored to meet the demanding requirements of scenarios involving the interconnection of tens of thousands of compute cards, this solution redefines the network architecture of intelligent computing centers. Performance

Artificial Intelligence: High-Performance Computing and High-Speed Optical Module Technology Trends
Artificial intelligence demands extraordinarily large computational power. In high-performance computing systems, there is a clear divergence in approach: scale-up systems rely on copper cable modules, while scale-out systems are increasingly dependent on optical modules. This year, detailed analyses have been conducted on copper cable modules used for scale-up applications. In
Related posts:
- What is the Difference Between UFM Telemetry, Enterprise and Cyber-AI?
- Any Specific Requirements for the Latency Performance of CX7 NIC?
- What do QSFP28, QSFP56, and SFP56 Mean? What Nomenclature Should be Used to Describe the Different Types of QSFP and SFP Ports?
- Which Arista 100G Transceivers and Cables Can Be Used in Breakout Mode?