What is the 100G SWDM4 Transceiver?

Picture of John Doe

John Doe

Answered on 8:18 am

A 100G SWDM4 transceiver is a type of optical transceiver that uses short wavelength division multiplexing (SWDM) technology to transmit 100G data over a standard duplex multimode fiber (MMF). It has four channels of 25G each, and uses four wavelengths in the 850nm window. It can support up to 100m over OM4 MMF or up to 150m over OM5 MMF. It is compatible with QSFP28 form factor and LC connectors. It is a cost-effective and easy-to-deploy solution for upgrading data centers from 10G/40G to 100G Ethernet without changing the existing MMF infrastructure.

It is supported on all Arista QSFP 100G ports and can be used for links up to 70m of OM3 fiber or up to 100m of OM4 fiber. The SWDM4 Tx port transmits 100G data over 4 x 25Gbps wavelengths, and the Rx port receives data over 4 x 25Gbps wavelengths. The wavelengths are in the “short wavelength” range (850nm–940nm).

People Also Ask

Google TPU vs NVIDIA GPU: The Ultimate Showdown in AI Hardware

In the world of AI acceleration, the battle between Google’s Tensor Processing Unit (TPU) and NVIDIA’s GPU is far more than a spec-sheet war — it’s a philosophical clash between custom-designed ASIC (Application-Specific

Related Articles

800g sr8 and 400g sr4

800G SR8 and 400G SR4 Optical Transceiver Modules Compatibility and Interconnection Test Report

Version Change Log Writer V0 Sample Test Cassie Test Purpose Test Objects:800G OSFP SR8/400G OSFP SR4/400G Q112 SR4. By conducting corresponding tests, the test parameters meet the relevant industry standards, and the test modules can be normally used for Nvidia (Mellanox) MQM9790 switch, Nvidia (Mellanox) ConnectX-7 network card and Nvidia (Mellanox) BlueField-3, laying a foundation for

Read More »
ai cluster

Key Design Principles for AI Clusters: Scale, Efficiency, and Flexibility

In the era of trillion-parameter AI models, building high-performance AI clusters has become a core competitive advantage for cloud providers and AI enterprises. This article deeply analyzes the unique network requirements of AI workloads, compares architectural differences between AI clusters and traditional data centers, and introduces two mainstream network design

Read More »
GPU

Google TPU vs NVIDIA GPU: The Ultimate Showdown in AI Hardware

In the world of AI acceleration, the battle between Google’s Tensor Processing Unit (TPU) and NVIDIA’s GPU is far more than a spec-sheet war — it’s a philosophical clash between custom-designed ASIC (Application-Specific Integrated Circuit) and general-purpose parallel computing (GPGPU). These represent the two dominant schools of thought in today’s AI hardware landscape.

Read More »
h3c 25g switch

H3C S6550XE-HI Series 25G Ethernet Switch: High-Performance 25G/100G Solution for Campus and Metro Networks

The H3C S6550XE-HI series is a cutting-edge, high-performance, high-density 25G/100G Ethernet switch developed by H3C using industry-leading professional ASIC technology. Designed as a next-generation Layer 3 Ethernet switch, it delivers exceptional security, IPv4/IPv6 dual-stack management and forwarding, and full support for static routing protocols as well as dynamic routing protocols including

Read More »
nvidia nic

Switching NVIDIA ConnectX Series NICs from InfiniBand to Ethernet Mode: A Step-by-Step Guide

The NVIDIA ConnectX Virtual Protocol Interconnect (VPI) series network interface cards (NICs)—including models such as ConnectX-4, ConnectX-5, ConnectX-6, ConnectX-7, and ConnectX-8 (commonly abbreviated as CX-4/5/6/7/8)—represent a rare class of dual-mode adapters in the industry. A single card enables seamless switching between InfiniBand (IB) and Ethernet physical networks without hardware replacement.

Read More »
Scroll to Top