- Felisac
FiberMall
Answered on 8:44 am
The 100G-SWDM4 transceiver uses four wavelengths in the 850nm window, while the 100G-SRBD transceiver uses two wavelengths in the same window. This means that the 100G-SWDM4 transceiver has a higher spectral efficiency and can support more channels on the same fiber. However, the 100G-SRBD transceiver has a lower insertion loss and a higher tolerance to modal dispersion, which can improve the signal quality and reliability.
The 100G-SWDM4 transceiver can support up to 70m over OM3 MMF or up to 100m over OM4 MMF, while the 100G-SRBD transceiver can support up to 70m over OM3 MMF, up to 100m over OM4 MMF, or up to 150m over OM5 MMF. This means that the 100G-SRBD transceiver can extend the reach of 100G transmission over duplex MMF by using OM5 MMF, which is a new type of MMF that has a wider bandwidth and lower attenuation than OM4 MMF.
The 100G-SWDM4 transceiver is compatible with the QSFP28 form factor and LC connectors, while the 100G-SRBD transceiver is compatible with both QSFP28 and QSFP form factors and LC connectors. This means that the 100G-SRBD transceiver can support both 100G and 40G ports, while the 100G-SWDM4 transceiver can only support 100G ports. However, the QSFP28 form factor is more compact and power-efficient than the QSFP form factor, which can save space and energy in data centers.
Both the 100G-SWDM4 and 100G-SRBD (sometimes called a “BIDI” transceiver) have been widely deployed within the industry, and share the same optical reach and fiber type (70m/100m over OM3/OM4 duplex MMF).
However, the 100G-SWDM4 and 100G-SRBD do not interoperate with each other.
If interop with future 400G optics is a consideration, then the QSFP-100G-SRBD should be considered. The QSFP-100G-SRBD transceiver will interoperate with future Arista “400G-BIDI” transceivers. That is, an Arista OSFP-400G-SRBD or QDD-400G-SRBD transceiver will support breakout into 4x QSFP-100G-SRBD. The SWDM4 does not have a path for interop with future 400G optics.
The decision on which optic to will often depend on interop requirements. For example, for applications that require optical interop with third party 100G BIDI optics, the QSFP-100G-SRBD should be used.
People Also Ask
Meta’s GB300 Liquid-Cooled AI Server: Clemente (1U 4xGPU) – Revolutionizing AI Infrastructure
In the fast-evolving world of AI data centers, liquid-cooled servers are the backbone of high-performance computing. If you’re exploring cutting-edge solutions for cloud computing, enterprise networks, or AI-enabled environments, Meta’s GB300 liquid-cooled AI server – codenamed Clemente – stands out. This 1U powerhouse packs 4x GPUs into a compact form
Optical Modules and PCBs: Driving High-Speed Data Transmission in the AI Era
In the fast-paced world of data communication, the demand for efficient, high-bandwidth solutions has never been greater. As AI-driven applications and massive data processing push the boundaries of network performance, optical modules and their integral optical module PCBs have evolved rapidly to meet these challenges. This evolution not only enhances transmission efficiency
Hotchip 2025 Day 0 Tutorials: Essential Insights on AI Workloads, Rack Architectures, and Custom GB200 Solutions
In the ever-evolving world of AI and data center technologies, Hotchip 2025 kicked off with an enriching Day 0 Tutorials lineup. As a staple event in the industry, this year’s sessions served as an appetizing prelude, focusing on data center racks in the morning and kernel programming in the afternoon.
Deep Dive into NVIDIA GB200 Liquid Cooling Plate Design: Advanced Liquid Cooling for AI Chips
Next-generation AI chips like NVIDIA’s GB200 are pushing the boundaries of performance. But this immense power comes at a cost: staggering heat generation. A single GB200 chip package consumes up to 2700 W of power. With such high power in such a compact space, traditional air-cooling systems simply can’t keep up.
Mastering SONiC: 6 Essential Points to Grasp for Open Networking Success
SONiC (Software for Open Networking in the Cloud) is an open-source network operating system that differs significantly from other network operating systems you’ve encountered before. Learning SONiC requires new mental preparation and skill reserves. As a new operating system that fundamentally transforms network architecture, the following key insights and abilities
Detachable Fiber Connection Technology in CPO Systems
In the rapidly evolving world of high-speed data communication, Co-Packaged Optics (CPO) technology stands out as a game-changer. By integrating optical and electronic devices into a single package, CPO overcomes the bandwidth limitations of traditional electrical interconnects. At the heart of a successful CPO system lies a critical component that
Related Articles

800G SR8 and 400G SR4 Optical Transceiver Modules Compatibility and Interconnection Test Report
Version Change Log Writer V0 Sample Test Cassie Test Purpose Test Objects:800G OSFP SR8/400G OSFP SR4/400G Q112 SR4. By conducting corresponding tests, the test parameters meet the relevant industry standards, and the test modules can be normally used for Nvidia (Mellanox) MQM9790 switch, Nvidia (Mellanox) ConnectX-7 network card and Nvidia (Mellanox) BlueField-3, laying a foundation for

Meta’s GB300 Liquid-Cooled AI Server: Clemente (1U 4xGPU) – Revolutionizing AI Infrastructure
In the fast-evolving world of AI data centers, liquid-cooled servers are the backbone of high-performance computing. If you’re exploring cutting-edge solutions for cloud computing, enterprise networks, or AI-enabled environments, Meta’s GB300 liquid-cooled AI server – codenamed Clemente – stands out. This 1U powerhouse packs 4x GPUs into a compact form

Optical Modules and PCBs: Driving High-Speed Data Transmission in the AI Era
In the fast-paced world of data communication, the demand for efficient, high-bandwidth solutions has never been greater. As AI-driven applications and massive data processing push the boundaries of network performance, optical modules and their integral optical module PCBs have evolved rapidly to meet these challenges. This evolution not only enhances transmission efficiency

Hotchip 2025 Day 0 Tutorials: Essential Insights on AI Workloads, Rack Architectures, and Custom GB200 Solutions
In the ever-evolving world of AI and data center technologies, Hotchip 2025 kicked off with an enriching Day 0 Tutorials lineup. As a staple event in the industry, this year’s sessions served as an appetizing prelude, focusing on data center racks in the morning and kernel programming in the afternoon.

Deep Dive into NVIDIA GB200 Liquid Cooling Plate Design: Advanced Liquid Cooling for AI Chips
Next-generation AI chips like NVIDIA’s GB200 are pushing the boundaries of performance. But this immense power comes at a cost: staggering heat generation. A single GB200 chip package consumes up to 2700 W of power. With such high power in such a compact space, traditional air-cooling systems simply can’t keep up.

Mastering SONiC: 6 Essential Points to Grasp for Open Networking Success
SONiC (Software for Open Networking in the Cloud) is an open-source network operating system that differs significantly from other network operating systems you’ve encountered before. Learning SONiC requires new mental preparation and skill reserves. As a new operating system that fundamentally transforms network architecture, the following key insights and abilities

Detachable Fiber Connection Technology in CPO Systems
In the rapidly evolving world of high-speed data communication, Co-Packaged Optics (CPO) technology stands out as a game-changer. By integrating optical and electronic devices into a single package, CPO overcomes the bandwidth limitations of traditional electrical interconnects. At the heart of a successful CPO system lies a critical component that
