- Felisac
- September 28, 2023
- 8:44 am
FiberMall
Answered on 8:44 am
The 100G-SWDM4 transceiver uses four wavelengths in the 850nm window, while the 100G-SRBD transceiver uses two wavelengths in the same window. This means that the 100G-SWDM4 transceiver has a higher spectral efficiency and can support more channels on the same fiber. However, the 100G-SRBD transceiver has a lower insertion loss and a higher tolerance to modal dispersion, which can improve the signal quality and reliability.
The 100G-SWDM4 transceiver can support up to 70m over OM3 MMF or up to 100m over OM4 MMF, while the 100G-SRBD transceiver can support up to 70m over OM3 MMF, up to 100m over OM4 MMF, or up to 150m over OM5 MMF. This means that the 100G-SRBD transceiver can extend the reach of 100G transmission over duplex MMF by using OM5 MMF, which is a new type of MMF that has a wider bandwidth and lower attenuation than OM4 MMF.
The 100G-SWDM4 transceiver is compatible with the QSFP28 form factor and LC connectors, while the 100G-SRBD transceiver is compatible with both QSFP28 and QSFP form factors and LC connectors. This means that the 100G-SRBD transceiver can support both 100G and 40G ports, while the 100G-SWDM4 transceiver can only support 100G ports. However, the QSFP28 form factor is more compact and power-efficient than the QSFP form factor, which can save space and energy in data centers.
Both the 100G-SWDM4 and 100G-SRBD (sometimes called a “BIDI” transceiver) have been widely deployed within the industry, and share the same optical reach and fiber type (70m/100m over OM3/OM4 duplex MMF).
However, the 100G-SWDM4 and 100G-SRBD do not interoperate with each other.
If interop with future 400G optics is a consideration, then the QSFP-100G-SRBD should be considered. The QSFP-100G-SRBD transceiver will interoperate with future Arista “400G-BIDI” transceivers. That is, an Arista OSFP-400G-SRBD or QDD-400G-SRBD transceiver will support breakout into 4x QSFP-100G-SRBD. The SWDM4 does not have a path for interop with future 400G optics.
The decision on which optic to will often depend on interop requirements. For example, for applications that require optical interop with third party 100G BIDI optics, the QSFP-100G-SRBD should be used.
People Also Ask
NVIDIA HGX B200 and Thoughts on Its Liquid Cooling Solution
The NVIDIA HGX B200 is NVIDIA’s latest high-performance computing platform, based on the Blackwell GPU architecture. It integrates several advanced technologies and components designed to deliver exceptional computing performance and energy efficiency. The complete system height with the HGX B200 air-cooled module reaches 10U, with the HGX B200 air-cooled module
Future Network Vision for AI Centers: Arista’s Transformation Journey
Evolution and Challenges of AI Network Architecture When discussing AI networks, two key dimensions can be analyzed. The first dimension is the foundational network architecture provided for AI. The second dimension is the application of AI technology in network operations and maintenance. We have integrated various features and solutions to
Distribution Frame and Switch
When setting up and designing a network, it is important to understand the role of switches and distribution frame if you want to achieve optimal performance and reliability. Both are key parts of a structured cabling system, but they perform different functions. Passive devices used primarily to manage network cables
Understanding the Power of NVIDIA’s BlueField-3 DPU
Introduction When working with NVIDIA’s H100 SXM servers, you may often see a configuration that includes two BFD-3 units. This raises questions, especially since the system already comes with eight CX-7 400G network cards. What are the fundamental differences and roles of BFD-3 compared to CX-7? Moreover, why does BFD
Joint Testing of 400GbE Optical Transmission System by FiberMall
FiberMall, in collaboration with Lumentum-Neophotonics, Cisco-Acacia, and EXFO, has successfully proposed a 927-kilometer end-to-end interoperable 400-GbE (Gigabit Ethernet) optical transmission system. This system integrates the latest 400G pluggable optical modules, addressing the needs of Ethernet clients (IEEE 802.3 400GBASE), data center interconnects (OIF 400-ZR), and metro/regional (400G OpenROADM) networks. The
Mellanox MMA1T00-HS: The Ultimate Guide to a 200G QSFP56 Optical Transceiver
As the technology for data centers has changed, so has the demand for greater bandwidth and transmission of data. The Mellanox MMA1T00-HS, which is a 200G QSFP56 optical transceiver, is a breakthrough in the field of connectivity as it offers a powerful solution for new-age network systems. This is a
Related Articles
800G SR8 and 400G SR4 Optical Transceiver Modules Compatibility and Interconnection Test Report
Version Change Log Writer V0 Sample Test Cassie Test Purpose Test Objects:800G OSFP SR8/400G OSFP SR4/400G Q112 SR4. By conducting corresponding tests, the test parameters meet the relevant industry standards, and the test modules can be normally used for Nvidia (Mellanox) MQM9790 switch, Nvidia (Mellanox) ConnectX-7 network card and Nvidia (Mellanox) BlueField-3, laying a foundation for
NVIDIA HGX B200 and Thoughts on Its Liquid Cooling Solution
The NVIDIA HGX B200 is NVIDIA’s latest high-performance computing platform, based on the Blackwell GPU architecture. It integrates several advanced technologies and components designed to deliver exceptional computing performance and energy efficiency. The complete system height with the HGX B200 air-cooled module reaches 10U, with the HGX B200 air-cooled module
Future Network Vision for AI Centers: Arista’s Transformation Journey
Evolution and Challenges of AI Network Architecture When discussing AI networks, two key dimensions can be analyzed. The first dimension is the foundational network architecture provided for AI. The second dimension is the application of AI technology in network operations and maintenance. We have integrated various features and solutions to
Distribution Frame and Switch
When setting up and designing a network, it is important to understand the role of switches and distribution frame if you want to achieve optimal performance and reliability. Both are key parts of a structured cabling system, but they perform different functions. Passive devices used primarily to manage network cables
Understanding the Power of NVIDIA’s BlueField-3 DPU
Introduction When working with NVIDIA’s H100 SXM servers, you may often see a configuration that includes two BFD-3 units. This raises questions, especially since the system already comes with eight CX-7 400G network cards. What are the fundamental differences and roles of BFD-3 compared to CX-7? Moreover, why does BFD
Joint Testing of 400GbE Optical Transmission System by FiberMall
FiberMall, in collaboration with Lumentum-Neophotonics, Cisco-Acacia, and EXFO, has successfully proposed a 927-kilometer end-to-end interoperable 400-GbE (Gigabit Ethernet) optical transmission system. This system integrates the latest 400G pluggable optical modules, addressing the needs of Ethernet clients (IEEE 802.3 400GBASE), data center interconnects (OIF 400-ZR), and metro/regional (400G OpenROADM) networks. The
Mellanox MMA1T00-HS: The Ultimate Guide to a 200G QSFP56 Optical Transceiver
As the technology for data centers has changed, so has the demand for greater bandwidth and transmission of data. The Mellanox MMA1T00-HS, which is a 200G QSFP56 optical transceiver, is a breakthrough in the field of connectivity as it offers a powerful solution for new-age network systems. This is a