- Felisac

Harper Ross
Answered on 10:10 am
No, you cannot plug an OSFP module into a QSFP-DD port, or a QSFP-DD module into an OSFP port. The OSFP and QSFP-DD form-factors are not physically compatible with each other. The OSFP is slightly wider and deeper than the QSFP-DD, and has a different electrical interface and connector. The OSFP also has a higher power consumption and heat dissipation than the QSFP-DD. Therefore, you need to use the appropriate form-factor for your port and device.
However, both OSFP and QSFP-DD are backward compatible with QSFP+/QSFP28 modules, which are widely used for 100G applications. You can use an adapter to plug a QSFP+/QSFP28 module into an OSFP or QSFP-DD port, and it will work as expected. This provides flexibility and interoperability for network operators who want to upgrade their infrastructure to 400G.
People Also Ask
Hotchip 2025 Day 0 Tutorials: Essential Insights on AI Workloads, Rack Architectures, and Custom GB200 Solutions
In the ever-evolving world of AI and data center technologies, Hotchip 2025 kicked off with an enriching Day 0 Tutorials lineup. As a staple event in the industry, this year’s sessions served as an appetizing prelude, focusing on data center racks in the morning and kernel programming in the afternoon.
Deep Dive into NVIDIA GB200 Liquid Cooling Plate Design: Advanced Liquid Cooling for AI Chips
Next-generation AI chips like NVIDIA’s GB200 are pushing the boundaries of performance. But this immense power comes at a cost: staggering heat generation. A single GB200 chip package consumes up to 2700 W of power. With such high power in such a compact space, traditional air-cooling systems simply can’t keep up.
Mastering SONiC: 6 Essential Points to Grasp for Open Networking Success
SONiC (Software for Open Networking in the Cloud) is an open-source network operating system that differs significantly from other network operating systems you’ve encountered before. Learning SONiC requires new mental preparation and skill reserves. As a new operating system that fundamentally transforms network architecture, the following key insights and abilities
Detachable Fiber Connection Technology in CPO Systems
In the rapidly evolving world of high-speed data communication, Co-Packaged Optics (CPO) technology stands out as a game-changer. By integrating optical and electronic devices into a single package, CPO overcomes the bandwidth limitations of traditional electrical interconnects. At the heart of a successful CPO system lies a critical component that
NVIDIA Launches Spectrum-XGS Ethernet Technology: From Scale-Up/Out to Cross-Domain Scaling!
In the lead-up to the 2025 Hot Chips conference, NVIDIA officially unveiled the Spectrum-XGS Ethernet technology. This innovative solution, based on network optimization algorithms, introduces “scale-across” capabilities, breaking through the power and space physical limitations of single data centers. It connects multiple data centers distributed across different cities and countries
1.6 T Optical Module Production Line TX Parallel Testing: A Comprehensive Guide
In the fast-paced realm of high-speed optical communications, major optical module manufacturers are leveraging 4-channel optical sampling oscilloscopes to enhance TX testing efficiency for 400G, 800G, and 1.6 T modules. However, due to the architectural differences between 4-channel and single-channel TX testing, extra attention to details is essential. Otherwise, even after
Related Articles

800G SR8 and 400G SR4 Optical Transceiver Modules Compatibility and Interconnection Test Report
Version Change Log Writer V0 Sample Test Cassie Test Purpose Test Objects:800G OSFP SR8/400G OSFP SR4/400G Q112 SR4. By conducting corresponding tests, the test parameters meet the relevant industry standards, and the test modules can be normally used for Nvidia (Mellanox) MQM9790 switch, Nvidia (Mellanox) ConnectX-7 network card and Nvidia (Mellanox) BlueField-3, laying a foundation for

Hotchip 2025 Day 0 Tutorials: Essential Insights on AI Workloads, Rack Architectures, and Custom GB200 Solutions
In the ever-evolving world of AI and data center technologies, Hotchip 2025 kicked off with an enriching Day 0 Tutorials lineup. As a staple event in the industry, this year’s sessions served as an appetizing prelude, focusing on data center racks in the morning and kernel programming in the afternoon.

Deep Dive into NVIDIA GB200 Liquid Cooling Plate Design: Advanced Liquid Cooling for AI Chips
Next-generation AI chips like NVIDIA’s GB200 are pushing the boundaries of performance. But this immense power comes at a cost: staggering heat generation. A single GB200 chip package consumes up to 2700 W of power. With such high power in such a compact space, traditional air-cooling systems simply can’t keep up.

Mastering SONiC: 6 Essential Points to Grasp for Open Networking Success
SONiC (Software for Open Networking in the Cloud) is an open-source network operating system that differs significantly from other network operating systems you’ve encountered before. Learning SONiC requires new mental preparation and skill reserves. As a new operating system that fundamentally transforms network architecture, the following key insights and abilities

Detachable Fiber Connection Technology in CPO Systems
In the rapidly evolving world of high-speed data communication, Co-Packaged Optics (CPO) technology stands out as a game-changer. By integrating optical and electronic devices into a single package, CPO overcomes the bandwidth limitations of traditional electrical interconnects. At the heart of a successful CPO system lies a critical component that

NVIDIA Launches Spectrum-XGS Ethernet Technology: From Scale-Up/Out to Cross-Domain Scaling!
In the lead-up to the 2025 Hot Chips conference, NVIDIA officially unveiled the Spectrum-XGS Ethernet technology. This innovative solution, based on network optimization algorithms, introduces “scale-across” capabilities, breaking through the power and space physical limitations of single data centers. It connects multiple data centers distributed across different cities and countries

1.6 T Optical Module Production Line TX Parallel Testing: A Comprehensive Guide
In the fast-paced realm of high-speed optical communications, major optical module manufacturers are leveraging 4-channel optical sampling oscilloscopes to enhance TX testing efficiency for 400G, 800G, and 1.6 T modules. However, due to the architectural differences between 4-channel and single-channel TX testing, extra attention to details is essential. Otherwise, even after