- Casey
- September 7, 2023
- 8:47 am

FiberMall
Answered on 8:47 am
Selecting the right 400G transceiver for multimode fiber involves many factors. Here are some of the key considerations:
Distance: The range of operations for each type of transceiver varies. Before choosing a transceiver, you should know the exact distance between the systems you plan to connect. Short-range transceivers are typically used for distances up to 70m, while long-range variants can cover distances above 2km.
Power Consumption: Power usage can vary substantially from one transceiver type to another. Higher capacity transceivers often use more power. Ideally, you should aim for a transceiver that offers the required data rate at the lowest possible power consumption.
Cost: Pricing can vary significantly between different transceivers. The overall cost should be evaluated in the context of your specific networking needs and budgetary constraints.
Compatibility: Not all transceivers will be compatible with your switches, routers, or other network devices. Be sure to confirm that the transceiver you choose works with your existing hardware.
Interconnection: Consider how different transceivers suit your interconnection environments. Transceivers come in different form factors such as QSFP-DD, OSFP, CFP2, CFP8, or COBO, and each has its own specifications for things like power consumption, size, and interface.
Reliability and Durability: The lifespan and durability of the transceivers also come into play. High-quality transceivers are built to last, reducing the need for replacements and maintenance.
The key features and common applications of each of these transceivers are described below.
1.The OSFP-400G-SR8 / SR8-C and QDD-400G-SR8 / SR8-C
The 400G-SR8 was the first 400G MMF transceiver available and has been deployed for point-to-point 400GE applications, such as leaf-to-spine connectivity, illustrated below.
While the 400G-SR8 provides cost-effective 400GE connectivity over MMF, it requires 16 fibers per transceiver and uses an MPO-16 APC fiber connector. Most 40G and 100G parallel MMF optics (such as the 40G-SR4 and 100G-SR4) use MPO-12 UPC fiber connectors. MPO-16 to 2x MPO-12 patch cables are required to use a 400G-SR8/SR8-C transceiver over an MPO-12 UPC-based fiber plant.
Another key application for 400G-SR8 transceivers is optical breakout into 2x 200G-SR4 links, enabling TOR-to-host connectivity where 200G to the host is required, as illustrated below.
The 400G-SR8-C transceiver has the same features as the 400G-SR8, with the added ability to breakout into 8x 50G-SR or 8x 25G-SR optical links. It can therefore be used in applications that require high-density 50G or 25G breakouts – as illustrated below.
- The OSFP-400G-SRBD and QDD-400G-SRBD, or “400G-BIDI”transceivers.
400G-BIDI transceivers use the widely deployed MPO-12 UPC connector for parallel multimode fiber. This allows existing 40G or 100G links that use 40G-SR4 or 100G-SR4 QSFP optics to be upgraded to 400GE with no change to the fiber plant, as illustrated below:
When configured for 400GE operation, the 400G-BIDI transceiver is compliant with the IEEE 400GBASESR4.2 specification for 400GE over 4 pairs of MMF.
Arista’s 400G-BIDI transceivers are also capable of breaking out into 4x 100GE links and can be configured (via EOS) to interoperate either with the widely deployed base of 100G-BIDI (100G-SRBD) transceivers, or newer 100G-SR1.2 transceivers, as indicated below.
In summary, Arista’s 400G-BIDI transceiver is software configurable to operate in any one of three operating modes:
i) 400G-SR4.2 for point-to-point 400GE links
ii) 4x 100G-BIDI for breakout and interop with 4x 100G-BIDI (100G-SRBD) transceivers
iii) 4x 100G-SR1.2 for breakout and interop with 4x 100G-SR1.2 transceivers
People Also Ask
Understanding Optical Transceiver Modules: A Comprehensive Guide to Technical Parameters
In the world of fiber optic communications, optical transceiver modules play a pivotal role as interfaces that convert electrical signals to optical signals and vice versa. If you’re dealing with data centers, telecommunications, or AI networking, grasping the key parameters of an optical transceiver module is essential. This blog post dives deep
Spine-Leaf vs. Traditional Three-Tier Architecture: Comprehensive Comparison and Analysis
Introduction Evolution of Data Center Networking Over the past few decades, data center networking has undergone a massive transformation from simple local area networks to complex distributed systems. In the 1990s, data centers primarily relied on basic Layer 2 switching networks, where servers were interconnected via hubs or low-end switches.
AMD: Pioneering the Future of AI Liquid Cooling Markets
In the rapidly evolving landscape of AI infrastructure, AMD is emerging as a game-changer, particularly in liquid cooling technologies. As data centers push the boundaries of performance and efficiency, AMD’s latest advancements are setting new benchmarks. FiberMall, a specialist provider of optical-communication products and solutions, is committed to delivering cost-effective
The Evolution of Optical Modules: Powering the Future of Data Centers and Beyond
In an era dominated by artificial intelligence (AI), cloud computing, and big data, the demand for high-performance data transmission has never been greater. Data centers, the beating hearts of this digital revolution, are tasked with processing and moving massive volumes of data at unprecedented speeds. At the core of this
How is the Thermal Structure of OSFP Optical Modules Designed?
The power consumption of ultra-high-speed optical modules with 400G OSFP and higher rates has significantly increased, making thermal management a critical challenge. For OSFP package type optical modules, the protocol explicitly specifies the impedance range of the heat sink fins. Specifically, when the cooling gas wind pressure does not exceed
AI Compute Clusters: Powering the Future
In recent years, the global rise of artificial intelligence (AI) has captured widespread attention across society. A common point of discussion surrounding AI is the concept of compute clusters—one of the three foundational pillars of AI, alongside algorithms and data. These compute clusters serve as the primary source of computational
Related Articles

800G SR8 and 400G SR4 Optical Transceiver Modules Compatibility and Interconnection Test Report
Version Change Log Writer V0 Sample Test Cassie Test Purpose Test Objects:800G OSFP SR8/400G OSFP SR4/400G Q112 SR4. By conducting corresponding tests, the test parameters meet the relevant industry standards, and the test modules can be normally used for Nvidia (Mellanox) MQM9790 switch, Nvidia (Mellanox) ConnectX-7 network card and Nvidia (Mellanox) BlueField-3, laying a foundation for

Understanding Optical Transceiver Modules: A Comprehensive Guide to Technical Parameters
In the world of fiber optic communications, optical transceiver modules play a pivotal role as interfaces that convert electrical signals to optical signals and vice versa. If you’re dealing with data centers, telecommunications, or AI networking, grasping the key parameters of an optical transceiver module is essential. This blog post dives deep

Spine-Leaf vs. Traditional Three-Tier Architecture: Comprehensive Comparison and Analysis
Introduction Evolution of Data Center Networking Over the past few decades, data center networking has undergone a massive transformation from simple local area networks to complex distributed systems. In the 1990s, data centers primarily relied on basic Layer 2 switching networks, where servers were interconnected via hubs or low-end switches.

AMD: Pioneering the Future of AI Liquid Cooling Markets
In the rapidly evolving landscape of AI infrastructure, AMD is emerging as a game-changer, particularly in liquid cooling technologies. As data centers push the boundaries of performance and efficiency, AMD’s latest advancements are setting new benchmarks. FiberMall, a specialist provider of optical-communication products and solutions, is committed to delivering cost-effective

The Evolution of Optical Modules: Powering the Future of Data Centers and Beyond
In an era dominated by artificial intelligence (AI), cloud computing, and big data, the demand for high-performance data transmission has never been greater. Data centers, the beating hearts of this digital revolution, are tasked with processing and moving massive volumes of data at unprecedented speeds. At the core of this

How is the Thermal Structure of OSFP Optical Modules Designed?
The power consumption of ultra-high-speed optical modules with 400G OSFP and higher rates has significantly increased, making thermal management a critical challenge. For OSFP package type optical modules, the protocol explicitly specifies the impedance range of the heat sink fins. Specifically, when the cooling gas wind pressure does not exceed

AI Compute Clusters: Powering the Future
In recent years, the global rise of artificial intelligence (AI) has captured widespread attention across society. A common point of discussion surrounding AI is the concept of compute clusters—one of the three foundational pillars of AI, alongside algorithms and data. These compute clusters serve as the primary source of computational