What Does It Mean When an Electrical or Optical Channel is PAM-4 or NRZ?

John Doe

John Doe

Answered on 8:10 am

PAM-4 and NRZ are two different modulation techniques that are used to transmit data over an electrical or optical channel. Modulation is the process of changing the characteristics of a signal (such as voltage, amplitude, or frequency) to encode information. PAM-4 and NRZ have different advantages and disadvantages depending on the channel characteristics and the data rate.

PAM-4 stands for Pulse Amplitude Modulation 4-level. It means that the signal can have four different levels of amplitude (or voltage), each representing two bits of information. For example, a PAM-4 signal can use 0V, 1V, 2V, and 3V to encode 00, 01, 11, and 10 respectively. PAM-4 can transmit twice as much data as NRZ for the same symbol rate (or baud rate), which is the number of times the signal changes per second. However, PAM-4 also has some drawbacks, such as higher power consumption, lower signal-to-noise ratio (SNR), and higher bit error rate (BER). PAM-4 requires more sophisticated signal processing and error correction techniques to overcome these challenges. PAM-4 is used for high-speed data transmission such as 400G Ethernet.

PAM4

NRZ stands for Non-Return-to-Zero. It means that the signal can have two different levels of amplitude (or voltage), each representing one bit of information. For example, a NRZ signal can use -1V and +1V to encode 0 and 1 respectively. NRZ does not return to zero voltage between symbols, hence the name. NRZ has some advantages over PAM-4, such as lower power consumption, higher SNR, and lower BER. NRZ is simpler and more robust than PAM-4, but it also has a lower data rate for the same symbol rate. NRZ is used for short-distance data transmission such as 100G Ethernet.

NRZ

When a signal is referred to as “25Gb/s NRZ” or “25G NRZ”, it means the signal is carrying data at 25 Gbit / second with NRZ modulation. When a signal is referred to as “50G PAM-4”, or “100G PAM-4” it means the signal is carrying data at a rate of 50 Gbit / second, or 100 Gbit / second, respectively, using PAM-4 modulation.

People Also Ask

How NVIDIA GB200 Utilizes 800G/1.6T DAC/ACC

NVIDIA has released the latest GB200 series compute systems, with significantly improved performance. These systems utilize both copper and optical interconnects, leading to much discussion in the market about the evolution of “copper” and “optical” technologies. Current Situation: The GB200 (including the previous GH200) series is NVIDIA’s “superchip” system. Compared to

NVIDIA GB200 Analysis: Interconnect Architecture and Future Evolution

GB200 Interconnect Architecture Analysis NVLink Bandwidth Calculation NVIDIA has a lot of confusion in the calculation of NVLink transmission bandwidth and the concepts of SubLink/Port/Lane. Typically, the NVLink bandwidth of a single B200 chip is 1.8TB/s. This is usually calculated using the memory bandwidth algorithm, with the unit being bytes

Market Forecast for AEC, DAC, and AOC

According to a recent report from Lightcounting, the market for Active Electrical Cables (AEC), Digital-to-Analog Converters (DAC), and Active Optical Cables (AOC) is expected to grow from $1.2 billion in 2023 to $2.8 billion by 2028. Market Growth Rates Performance and Cost Trends AOC offers superior performance compared to AEC

The Accelerating AI Industry Drives Demand for 1.6T OSFP-XD

The demand for AI hardware is booming, and the shipment of computing chips is expected to accelerate. Based on FiberMall’s research on the computing power industry chain, FiberMall forecasts that the shipment of NVIDIA’s H-series and B-series chips will reach 3.56 million and 350,000 units respectively in 2024. In 2025,

The Differences Between MPO and MTP

In the rapidly evolving field of communications, fiber optic patch cables play a crucial role in data transmission. However, many people may misjudge the selection between MPO and MTP fiber optic patch cables. MPO and MTP connectors are widely used in various high-density and high-bandwidth fiber optic network applications. Here

What is the Differences Between CPO and LPO

Traditional optical modules are independent of the switching ASIC and connected to other electronic components through copper cables or optical fibers. This approach often leads to significant power consumption and signal loss during high-speed data transmission. Particularly, as network speeds have progressed from 400G to 800G and even 1.6T, and

Related Articles

800g sr8 and 400g sr4

800G SR8 and 400G SR4 Optical Transceiver Modules Compatibility and Interconnection Test Report

Version Change Log Writer V0 Sample Test Cassie Test Purpose Test Objects:800G OSFP SR8/400G OSFP SR4/400G Q112 SR4. By conducting corresponding tests, the test parameters meet the relevant industry standards, and the test modules can be normally used for Nvidia (Mellanox) MQM9790 switch, Nvidia (Mellanox) ConnectX-7 network card and Nvidia (Mellanox) BlueField-3, laying a foundation for

Read More »
gb200

How NVIDIA GB200 Utilizes 800G/1.6T DAC/ACC

NVIDIA has released the latest GB200 series compute systems, with significantly improved performance. These systems utilize both copper and optical interconnects, leading to much discussion in the market about the evolution of “copper” and “optical” technologies. Current Situation: The GB200 (including the previous GH200) series is NVIDIA’s “superchip” system. Compared to

Read More »
GB200 NVL72

NVIDIA GB200 Analysis: Interconnect Architecture and Future Evolution

GB200 Interconnect Architecture Analysis NVLink Bandwidth Calculation NVIDIA has a lot of confusion in the calculation of NVLink transmission bandwidth and the concepts of SubLink/Port/Lane. Typically, the NVLink bandwidth of a single B200 chip is 1.8TB/s. This is usually calculated using the memory bandwidth algorithm, with the unit being bytes

Read More »
module

Market Forecast for AEC, DAC, and AOC

According to a recent report from Lightcounting, the market for Active Electrical Cables (AEC), Digital-to-Analog Converters (DAC), and Active Optical Cables (AOC) is expected to grow from $1.2 billion in 2023 to $2.8 billion by 2028. Market Growth Rates Performance and Cost Trends AOC offers superior performance compared to AEC

Read More »
Traditional-three-layer-network-architecture-with-access-aggregation-and-core-layers

The Accelerating AI Industry Drives Demand for 1.6T OSFP-XD

The demand for AI hardware is booming, and the shipment of computing chips is expected to accelerate. Based on FiberMall’s research on the computing power industry chain, FiberMall forecasts that the shipment of NVIDIA’s H-series and B-series chips will reach 3.56 million and 350,000 units respectively in 2024. In 2025,

Read More »
MPO and MTP

The Differences Between MPO and MTP

In the rapidly evolving field of communications, fiber optic patch cables play a crucial role in data transmission. However, many people may misjudge the selection between MPO and MTP fiber optic patch cables. MPO and MTP connectors are widely used in various high-density and high-bandwidth fiber optic network applications. Here

Read More »
The evolution from pluggable modules to CPO and LPO

What is the Differences Between CPO and LPO

Traditional optical modules are independent of the switching ASIC and connected to other electronic components through copper cables or optical fibers. This approach often leads to significant power consumption and signal loss during high-speed data transmission. Particularly, as network speeds have progressed from 400G to 800G and even 1.6T, and

Read More »

Leave a Comment

Scroll to Top