What FEC is Required When the 400G-BIDI is Configured for Each of the Three Operating Modes?

Harry Collins

Harry Collins

Answered on 8:14 am

For 100G mode with QPSK modulation, the FEC type could be oFEC (OpenROADM) or SDFEC (Soft Decision FEC) with probabilistic constellation shaping.

For 200G mode with QPSK modulation, the FEC type could be SDFEC with probabilistic constellation shaping.

For 400G mode with 16-QAM modulation, the FEC type could be SDFEC with probabilistic constellation shaping.

The 400G-BIDI module can work in different ways depending on the switch and the application. It can use different types of FEC (Forward Error Correction) to improve the signal quality. FEC is a method of adding extra bits to the data to detect and correct errors.

One way is to use the 400G-SR4.2 or 4x 100G-SR1.2 mode, where the switch does the FEC and the module does not. The FEC used here is called KP-FEC, which is a type of Reed-Solomon FEC.

Another way is to use the 4x 100G-BIDI (100G-SRBD) mode, where the module does the FEC and the switch does not. The module uses a different FEC for each pair of fibers, which can work with the existing 100G-BIDI modules. This way, you can keep using your old 100G-BIDI modules with the new 400G-BIDI modules.

People Also Ask

Understanding NVIDIA’s Product Ecosystem and Naming Conventions

Compute Chips—V100, A100, H100, B200, etc. These terms are among the most commonly encountered in discussions about artificial intelligence. They refer to AI compute cards, specifically GPU models. NVIDIA releases a new GPU architecture every few years, each named after a renowned scientist. Cards based on a particular architecture typically

Differences Between BA, LA, and PA in Optical Transmission

Before diving into the specifics of BA, LA, and PA, it’s essential to understand the role of optical amplifiers in general. Optical amplifiers boost the power of optical signals without converting them to electrical signals, a process that enhances efficiency and reduces latency in fiber-optic communication systems. The primary types

What Is the Minimum Bend Radius of an Optical Fiber?

The minimum bend radius of an optical fiber is defined as the smallest radius to which the fiber can be bent while still maintaining normal transmission of optical signals. In practical terms, it is the minimum curvature radius that the fiber can endure without causing excessive signal loss, modal dispersion,

AEC Active Cable Testing Solution – Deciphering AEC Performance Step by Step

With the continuous expansion of data centers and the increasing demand for high-performance computing, the AEC (Active Electrical Cable) has emerged as an effective high-speed, short-distance transmission solution. Major cloud service providers—such as Google, AWS, and Microsoft—have already embarked on large-scale deployments of AEC, while hardware manufacturers like Nvidia have

Why Do 400G/100G Optical Ports in Switches Require Forward Error Correction (FEC)?

Introduction Optical networks require the use of Forward Error Correction (FEC) to guarantee reliable communication. Similar to how a reader may overlook a single spelling mistake in a text but struggle when errors accumulate, digital transmissions—encoded as sequences of “0”s and “1”s—are subject to inevitable signal attenuation and bit errors.

OCP EMEA 2025: FiberMall’s 1.6T Pluggable Optical Module Based on 224G per Lane

The rapid growth of artificial intelligence (AI) and machine learning has driven a substantial demand for higher bandwidth, making the 224G per lane configuration essential. Enhanced energy efficiency is equally critical in managing the ever-increasing power requirements of data centers. With copper-based transmission reaching its physical limits, optical communication has

Related Articles

800g sr8 and 400g sr4

800G SR8 and 400G SR4 Optical Transceiver Modules Compatibility and Interconnection Test Report

Version Change Log Writer V0 Sample Test Cassie Test Purpose Test Objects:800G OSFP SR8/400G OSFP SR4/400G Q112 SR4. By conducting corresponding tests, the test parameters meet the relevant industry standards, and the test modules can be normally used for Nvidia (Mellanox) MQM9790 switch, Nvidia (Mellanox) ConnectX-7 network card and Nvidia (Mellanox) BlueField-3, laying a foundation for

Read More »
GPU-models

Understanding NVIDIA’s Product Ecosystem and Naming Conventions

Compute Chips—V100, A100, H100, B200, etc. These terms are among the most commonly encountered in discussions about artificial intelligence. They refer to AI compute cards, specifically GPU models. NVIDIA releases a new GPU architecture every few years, each named after a renowned scientist. Cards based on a particular architecture typically

Read More »
Booster Amplifier

Differences Between BA, LA, and PA in Optical Transmission

Before diving into the specifics of BA, LA, and PA, it’s essential to understand the role of optical amplifiers in general. Optical amplifiers boost the power of optical signals without converting them to electrical signals, a process that enhances efficiency and reduces latency in fiber-optic communication systems. The primary types

Read More »
G.652D

What Is the Minimum Bend Radius of an Optical Fiber?

The minimum bend radius of an optical fiber is defined as the smallest radius to which the fiber can be bent while still maintaining normal transmission of optical signals. In practical terms, it is the minimum curvature radius that the fiber can endure without causing excessive signal loss, modal dispersion,

Read More »
the-AEC-market-is-poised-for-rapid-growth-in-the-coming-years

AEC Active Cable Testing Solution – Deciphering AEC Performance Step by Step

With the continuous expansion of data centers and the increasing demand for high-performance computing, the AEC (Active Electrical Cable) has emerged as an effective high-speed, short-distance transmission solution. Major cloud service providers—such as Google, AWS, and Microsoft—have already embarked on large-scale deployments of AEC, while hardware manufacturers like Nvidia have

Read More »
link-speed

OCP EMEA 2025: FiberMall’s 1.6T Pluggable Optical Module Based on 224G per Lane

The rapid growth of artificial intelligence (AI) and machine learning has driven a substantial demand for higher bandwidth, making the 224G per lane configuration essential. Enhanced energy efficiency is equally critical in managing the ever-increasing power requirements of data centers. With copper-based transmission reaching its physical limits, optical communication has

Read More »

Leave a Comment

Scroll to Top