The 400G-BIDI Module from Arista is Capable of being Broken out into 4x 100G-BIDI or 4x 100G-SR1.2 Links. What is the Difference Between 100G-BIDI and 100G-SR1.2?

FiberMall

FiberMall

Answered on 9:02 am

The difference between 100G-BIDI and 100G-SR1.2 is mainly in the number of optical lanes and the modulation solution. 100G-BIDI uses two optical lanes, one for each direction, over a duplex LC multi-mode fiber. 100G-SR1.2 uses four optical lanes, two for each direction, over the same fiber. 100G-BIDI uses NRZ (Non-Return-to-Zero) modulation, which means each bit is encoded as a single symbol. 100G-SR1.2 uses PAM4 (Pulse Amplitude Modulation) modulation, which means each symbol encodes two bits. PAM4 enables higher data rates with lower baud rates, but also introduces more noise and complexity. Both 100G-BIDI and 100G-SR1.2 are compliant to IEEE802.3bm 100GBASE-SR4 standard. The main advantage of 100G-BIDI is that it can reuse the existing 40G-BIDI infrastructure and reduce the fiber cabling cost. The main advantage of 100G-SR1.2 is that it can interoperate with 400G-SR4.2 and provide a future-proof solution for higher bandwidth demand.

Another difference between 100G-BIDI (100G-SRBD) and 100G-SR1.2 is the FEC (Forward Error Correction) used. 100G-BIDI (100G-SRBD) modules have been widely deployed for 100G operation over duplex MMF and use a FEC implementation that was developed prior to the IEEE standardization of KP-FEC for 50G PAM-4 based modules. Because of the differences in FEC implementation, 100G-SRBD and 100G-SR1.2 modules are not interoperable with each other.

People Also Ask

AI Compute Clusters: Powering the Future

In recent years, the global rise of artificial intelligence (AI) has captured widespread attention across society. A common point of discussion surrounding AI is the concept of compute clusters—one of the three foundational pillars of AI, alongside algorithms and data. These compute clusters serve as the primary source of computational

Data Center Switches: Current Landscape and Future Trends

As artificial intelligence (AI) drives exponential growth in data volumes and model complexity, distributed computing leverages interconnected nodes to accelerate training processes. Data center switches play a pivotal role in ensuring timely message delivery across nodes, particularly in large-scale data centers where tail latency is critical for handling competitive workloads.

Comprehensive Guide to 100G BIDI QSFP28 Simplex LC SMF Transceivers

The demand for high-speed, cost-effective, and fiber-efficient optical transceivers has surged with the growth of data centers, telecommunications, and 5G networks. The 100G BIDI QSFP28 (Bidirectional Quad Small Form-Factor Pluggable 28) transceiver is a standout solution, enabling 100 Gigabit Ethernet (100GbE) over a single-mode fiber (SMF) with a simplex LC

NVIDIA SN5600: The Ultimate Ethernet Switch for AI and Cloud Data Centers

The NVIDIA SN5600 is a cutting-edge, high-performance Ethernet switch designed to meet the demanding needs of modern data centers, particularly those focused on artificial intelligence (AI), high-performance computing (HPC), and cloud-scale infrastructure. As part of NVIDIA’s Spectrum-4 series, the SN5600 delivers unparalleled throughput, low latency, and advanced networking features, making

How Ethernet Outpaces InfiniBand in AI Networking

Ethernet Challenges InfiniBand’s Dominance InfiniBand dominated high-performance networking in the early days of generative AI due to its superior speed and low latency. However, Ethernet has made significant strides, leveraging cost efficiency, scalability, and continuous technological advancements to close the gap with InfiniBand networking. Industry giants like Amazon, Google, Oracle,

Understanding NVIDIA’s Product Ecosystem and Naming Conventions

Compute Chips—V100, A100, H100, B200, etc. These terms are among the most commonly encountered in discussions about artificial intelligence. They refer to AI compute cards, specifically GPU models. NVIDIA releases a new GPU architecture every few years, each named after a renowned scientist. Cards based on a particular architecture typically

Related Articles

800g sr8 and 400g sr4

800G SR8 and 400G SR4 Optical Transceiver Modules Compatibility and Interconnection Test Report

Version Change Log Writer V0 Sample Test Cassie Test Purpose Test Objects:800G OSFP SR8/400G OSFP SR4/400G Q112 SR4. By conducting corresponding tests, the test parameters meet the relevant industry standards, and the test modules can be normally used for Nvidia (Mellanox) MQM9790 switch, Nvidia (Mellanox) ConnectX-7 network card and Nvidia (Mellanox) BlueField-3, laying a foundation for

Read More »
AI-is-the-concept-of-compute-clusters

AI Compute Clusters: Powering the Future

In recent years, the global rise of artificial intelligence (AI) has captured widespread attention across society. A common point of discussion surrounding AI is the concept of compute clusters—one of the three foundational pillars of AI, alongside algorithms and data. These compute clusters serve as the primary source of computational

Read More »
Fixed Switch Illustration

Data Center Switches: Current Landscape and Future Trends

As artificial intelligence (AI) drives exponential growth in data volumes and model complexity, distributed computing leverages interconnected nodes to accelerate training processes. Data center switches play a pivotal role in ensuring timely message delivery across nodes, particularly in large-scale data centers where tail latency is critical for handling competitive workloads.

Read More »
100G BIDI QSFP28

Comprehensive Guide to 100G BIDI QSFP28 Simplex LC SMF Transceivers

The demand for high-speed, cost-effective, and fiber-efficient optical transceivers has surged with the growth of data centers, telecommunications, and 5G networks. The 100G BIDI QSFP28 (Bidirectional Quad Small Form-Factor Pluggable 28) transceiver is a standout solution, enabling 100 Gigabit Ethernet (100GbE) over a single-mode fiber (SMF) with a simplex LC

Read More »
SN5600-1

NVIDIA SN5600: The Ultimate Ethernet Switch for AI and Cloud Data Centers

The NVIDIA SN5600 is a cutting-edge, high-performance Ethernet switch designed to meet the demanding needs of modern data centers, particularly those focused on artificial intelligence (AI), high-performance computing (HPC), and cloud-scale infrastructure. As part of NVIDIA’s Spectrum-4 series, the SN5600 delivers unparalleled throughput, low latency, and advanced networking features, making

Read More »
multi-layer switching and advanced congestion control

How Ethernet Outpaces InfiniBand in AI Networking

Ethernet Challenges InfiniBand’s Dominance InfiniBand dominated high-performance networking in the early days of generative AI due to its superior speed and low latency. However, Ethernet has made significant strides, leveraging cost efficiency, scalability, and continuous technological advancements to close the gap with InfiniBand networking. Industry giants like Amazon, Google, Oracle,

Read More »
GPU-models

Understanding NVIDIA’s Product Ecosystem and Naming Conventions

Compute Chips—V100, A100, H100, B200, etc. These terms are among the most commonly encountered in discussions about artificial intelligence. They refer to AI compute cards, specifically GPU models. NVIDIA releases a new GPU architecture every few years, each named after a renowned scientist. Cards based on a particular architecture typically

Read More »

Leave a Comment

Scroll to Top