What do the Suffixes “SR8, SR8-C, SRBD, SR4, DR4/XDR4/PLR4, FR4/LR4 and 2FR4” Stand for?

Picture of John Doe

John Doe

Answered on 7:32 am

In general, the letters refer to reach or optics technology, and the number refers to the number of optical channels:

SR8: Short Range 8. This transceiver supports 400G transmission over multimode fiber (MMF) with a maximum reach of 100 meters. It uses a MPO-16 connector and PAM4 modulation.

SR8-C: Short Range 8 Copper. This transceiver supports 400G transmission over copper cable with a maximum reach of 3 meters. It uses a QSFP-DD connector and PAM4 modulation.

SRBD: Short Range Bidirectional. This transceiver supports 400G transmission over MMF with a maximum reach of 70 meters. It uses a duplex LC connector and PAM4 modulation.

SR4: Short Range 4. This transceiver supports 400G transmission over MMF with a maximum reach of 100 meters. It uses a MPO-12 connector and PAM4 modulation.

DR4 / XDR4 / PLR4: Data Center Reach 4 / eXtended Data Center Reach 4 / Parallel Long Reach 4. These transceivers support 400G transmission over single-mode fiber (SMF) with a maximum reach of 500 meters / 2 kilometers / 10 kilometers respectively. They use a MPO-12 connector and PAM4 modulation.

FR4 / LR4: Fiber Reach 4 / Long Reach 4. These transceivers support 400G transmission over SMF with a maximum reach of 2 kilometers / 10 kilometers respectively. They use a duplex LC connector and PAM4 modulation.

2FR4: Two Fiber Reach 4. This transceiver supports 400G transmission over SMF with a maximum reach of 2 kilometers. It uses two duplex LC connectors and coherent modulation.

People Also Ask

In-Depth Analysis Report on 800G Switches: Architectural Evolution, Market Landscape, and Future Outlook

Introduction: Reconstructing Network Infrastructure in the AI Era Paradigm Shift from Cloud Computing to AI Factories       Global data center networks are undergoing the most profound transformation in the past decade. Previously, network architectures were primarily designed around cloud computing and internet application traffic patterns, dominated by “north-south” client-server models. However,

Global 400G Ethernet Switch Market and Technical Architecture In-depth Research Report: AI-Driven Network Restructuring and Ecosystem Evolution 

Executive Summary Driven by the explosive growth of the digital economy and Artificial Intelligence (AI) technologies, global data center network infrastructure is at a critical historical node of migration from 100G to 400G/800G. As Large Language Model (LLM) parameters break through the trillion level and demands for High-Performance Computing (HPC)

Key Design Constraints for Stack-OSFP Optical Transceiver Cold Plate Liquid Cooling

Foreword  The data center industry has already adopted 800G/1.6T optical modules on a large scale, and the demand for cold plate liquid cooling of optical modules has increased significantly. To meet this industry demand, OSFP-MSA V5.22 version has added solutions applicable to cold plate liquid cooling. At present, there are

NVIDIA DGX Spark Quick Start Guide: Your Personal AI Supercomputer on the Desk

NVIDIA DGX Spark — the world’s smallest AI supercomputer powered by the NVIDIA GB10 Grace Blackwell Superchip — brings data-center-class AI performance to your desktop. With up to 1 PFLOP of FP4 AI compute and 128 GB of unified memory, it enables local inference on models up to 200 billion parameters and fine-tuning of models

RoCEv2 Explained: The Ultimate Guide to Low-Latency, High-Throughput Networking in AI Data Centers

In the fast-evolving world of AI training, high-performance computing (HPC), and cloud infrastructure, network performance is no longer just a supporting role—it’s the bottleneck breaker. RoCEv2 (RDMA over Converged Ethernet version 2) has emerged as the go-to protocol for building lossless Ethernet networks that deliver ultra-low latency, massive throughput, and minimal CPU

Related Articles

800g sr8 and 400g sr4

800G SR8 and 400G SR4 Optical Transceiver Modules Compatibility and Interconnection Test Report

Version Change Log Writer V0 Sample Test Cassie Test Purpose Test Objects:800G OSFP SR8/400G OSFP SR4/400G Q112 SR4. By conducting corresponding tests, the test parameters meet the relevant industry standards, and the test modules can be normally used for Nvidia (Mellanox) MQM9790 switch, Nvidia (Mellanox) ConnectX-7 network card and Nvidia (Mellanox) BlueField-3, laying a foundation for

Read More »
Report on 800G Switches

In-Depth Analysis Report on 800G Switches: Architectural Evolution, Market Landscape, and Future Outlook

Introduction: Reconstructing Network Infrastructure in the AI Era Paradigm Shift from Cloud Computing to AI Factories       Global data center networks are undergoing the most profound transformation in the past decade. Previously, network architectures were primarily designed around cloud computing and internet application traffic patterns, dominated by “north-south” client-server models. However,

Read More »
400G global market

Global 400G Ethernet Switch Market and Technical Architecture In-depth Research Report: AI-Driven Network Restructuring and Ecosystem Evolution 

Executive Summary Driven by the explosive growth of the digital economy and Artificial Intelligence (AI) technologies, global data center network infrastructure is at a critical historical node of migration from 100G to 400G/800G. As Large Language Model (LLM) parameters break through the trillion level and demands for High-Performance Computing (HPC)

Read More »
RoCEv2

RoCEv2 Explained: The Ultimate Guide to Low-Latency, High-Throughput Networking in AI Data Centers

In the fast-evolving world of AI training, high-performance computing (HPC), and cloud infrastructure, network performance is no longer just a supporting role—it’s the bottleneck breaker. RoCEv2 (RDMA over Converged Ethernet version 2) has emerged as the go-to protocol for building lossless Ethernet networks that deliver ultra-low latency, massive throughput, and minimal CPU

Read More »
Scroll to Top