- Brian
- September 21, 2023
- 3:17 am

Harper Ross
Answered on 3:17 am
APC and PC/UPC are two types of polish styles for the ferrules inside the optical connectors. The ferrule is the housing for the exposed end of a fiber, designed to be connected to another fiber, or into a transmitter or receiver. The polish style affects the quality of the signal transmission and the return loss of the connector.
APC stands for Angled Physical Contact. It means that the ferrule endface is polished at an 8° angle, which causes the reflected light to reflect at an angle into the cladding instead of straight back toward the source. This reduces the return loss and improves the performance of the connector. APC connectors are usually green in color.
PC stands for Physical Contact. It means that the ferrule endface is polished with no angle but with a slight curvature for better core alignment. UPC stands for Ultra Physical Contact. It is an improvement of the PC polish with a finer surface finish and a lower return loss. PC and UPC connectors are usually blue in color.
Different applications may require different polish styles depending on the sensitivity to return loss and the wavelength range of the signal. Generally, APC connectors are preferred for single-mode fibers, especially for higher wavelengths (above 1500 nm) and longer distances. PC and UPC connectors are more common for multimode fibers and shorter distances.
Some examples of optical connectors that use APC polish are LC/APC, SC/APC, FC/APC, E2000/APC, etc. Some examples of optical connectors that use PC or UPC polish are LC/PC, SC/PC, FC/PC, ST/PC, MTRJ/PC, etc.
People Also Ask
Why Do 400G/100G Optical Ports in Switches Require Forward Error Correction (FEC)?
Introduction Optical networks require the use of Forward Error Correction (FEC) to guarantee reliable communication. Similar to how a reader may overlook a single spelling mistake in a text but struggle when errors accumulate, digital transmissions—encoded as sequences of “0”s and “1”s—are subject to inevitable signal attenuation and bit errors.
OCP EMEA 2025: FiberMall’s 1.6T Pluggable Optical Module Based on 224G per Lane
The rapid growth of artificial intelligence (AI) and machine learning has driven a substantial demand for higher bandwidth, making the 224G per lane configuration essential. Enhanced energy efficiency is equally critical in managing the ever-increasing power requirements of data centers. With copper-based transmission reaching its physical limits, optical communication has
OCP EMEA 2025: FiberMall Demonstrates 800G Pluggable Optical Modules with Immersion Cooling Systems
Traditional pluggable optical modules incorporate digital signal processors (DSPs) that perform full digital equalization for both electrical and optical signals. Because these DSPs are power-intensive, accounting for over 40% of total power consumption, efforts have been made in 800G and higher transceivers to reduce power usage by eliminating the DSP
New H3C Unveils the S12500AI: A New Generation AI Network Solution Based on the DDC Architecture
Recently, New H3C introduced its groundbreaking lossless network solution and compute cluster switch—the H3C S12500AI—built upon the DDC (Diversity Dynamic-Connectivity) architecture. Tailored to meet the demanding requirements of scenarios involving the interconnection of tens of thousands of compute cards, this solution redefines the network architecture of intelligent computing centers. Performance
Artificial Intelligence: High-Performance Computing and High-Speed Optical Module Technology Trends
Artificial intelligence demands extraordinarily large computational power. In high-performance computing systems, there is a clear divergence in approach: scale-up systems rely on copper cable modules, while scale-out systems are increasingly dependent on optical modules. This year, detailed analyses have been conducted on copper cable modules used for scale-up applications. In
SemiAnalysis of Huawei CloudMatrix and the 910C
Huawei has recently made a significant impact on the industry with its innovative AI accelerator and rack-level architecture. China’s latest domestically developed cloud supercomputing solution, CloudMatrix M8, was officially unveiled. Built upon the Ascend 910C processor, this solution is positioned to directly rival Nvidia’s GB200 NVL72 system, exhibiting superior technological
Related Articles

800G SR8 and 400G SR4 Optical Transceiver Modules Compatibility and Interconnection Test Report
Version Change Log Writer V0 Sample Test Cassie Test Purpose Test Objects:800G OSFP SR8/400G OSFP SR4/400G Q112 SR4. By conducting corresponding tests, the test parameters meet the relevant industry standards, and the test modules can be normally used for Nvidia (Mellanox) MQM9790 switch, Nvidia (Mellanox) ConnectX-7 network card and Nvidia (Mellanox) BlueField-3, laying a foundation for

Why Do 400G/100G Optical Ports in Switches Require Forward Error Correction (FEC)?
Introduction Optical networks require the use of Forward Error Correction (FEC) to guarantee reliable communication. Similar to how a reader may overlook a single spelling mistake in a text but struggle when errors accumulate, digital transmissions—encoded as sequences of “0”s and “1”s—are subject to inevitable signal attenuation and bit errors.

OCP EMEA 2025: FiberMall’s 1.6T Pluggable Optical Module Based on 224G per Lane
The rapid growth of artificial intelligence (AI) and machine learning has driven a substantial demand for higher bandwidth, making the 224G per lane configuration essential. Enhanced energy efficiency is equally critical in managing the ever-increasing power requirements of data centers. With copper-based transmission reaching its physical limits, optical communication has

OCP EMEA 2025: FiberMall Demonstrates 800G Pluggable Optical Modules with Immersion Cooling Systems
Traditional pluggable optical modules incorporate digital signal processors (DSPs) that perform full digital equalization for both electrical and optical signals. Because these DSPs are power-intensive, accounting for over 40% of total power consumption, efforts have been made in 800G and higher transceivers to reduce power usage by eliminating the DSP

New H3C Unveils the S12500AI: A New Generation AI Network Solution Based on the DDC Architecture
Recently, New H3C introduced its groundbreaking lossless network solution and compute cluster switch—the H3C S12500AI—built upon the DDC (Diversity Dynamic-Connectivity) architecture. Tailored to meet the demanding requirements of scenarios involving the interconnection of tens of thousands of compute cards, this solution redefines the network architecture of intelligent computing centers. Performance

Artificial Intelligence: High-Performance Computing and High-Speed Optical Module Technology Trends
Artificial intelligence demands extraordinarily large computational power. In high-performance computing systems, there is a clear divergence in approach: scale-up systems rely on copper cable modules, while scale-out systems are increasingly dependent on optical modules. This year, detailed analyses have been conducted on copper cable modules used for scale-up applications. In

SemiAnalysis of Huawei CloudMatrix and the 910C
Huawei has recently made a significant impact on the industry with its innovative AI accelerator and rack-level architecture. China’s latest domestically developed cloud supercomputing solution, CloudMatrix M8, was officially unveiled. Built upon the Ascend 910C processor, this solution is positioned to directly rival Nvidia’s GB200 NVL72 system, exhibiting superior technological
Related posts:
- Is the CX7 NDR 200 QSFP112 Compatible with HDR/EDR Cables?
- Is UFM as Functional as Managed Switch and Unmanaged Switch?
- What FEC is Required When the 400G-BIDI is Configured for Each of the Three Operating Modes?
- What Type of Optical Connectors do the 400G-FR4/LR4, 400G-DR4/XDR4/PLR4, 400G-BIDI (400G SRBD), 400G-SR8 and 400G-2FR4 Transceivers Use?