What are the 100G-DR, 100G-FR and 100G-LR QSFP Transceivers?

Harry Collins

Harry Collins

Answered on 2:21 am

The 100G-DR, 100G-FR, and 100G-LR QSFP transceivers are optical modules that support 100 Gigabit Ethernet data rates over single-mode fiber. They are based on the IEEE 802.3 standard and the 100G Lambda MSA specifications. They use a single wavelength of light to transmit and receive data, which reduces the complexity and cost of the optical components. They also have a small form factor and low power consumption, making them suitable for high-density and low-power applications.

The main differences between the three types of transceivers are the reach and the interoperability with other modules. The 100G-DR transceiver supports a reach of up to 500 meters over duplex single-mode fiber and can interoperate with 400G DR4 modules in 4x100GbE breakout applications. The 100G-FR transceiver supports a reach of up to 2 kilometers over duplex single-mode fiber and can interoperate with 400G DR4+ modules in 4x100GbE breakout applications. The 100G-LR transceiver supports a reach of up to 10 kilometers over duplex single-mode fiber and can interoperate with 4x100G LR1 modules in 4x100GbE breakout applications.

The difference between a legacy 100G QSFP module and a 100G-DR / FR module is illustrated below.

legacy module and dr

The 100G-DR/FR/LR modules have a reach of 500m/2km/10km over SMF, and are designed to interoperate with 400G-DR4/XDR4/PLR4 transceivers using a breakout cable. Each 400G-DR4/XDR4/PLR4 module can connect to 4 x 100G-DR/FR/LR modules.

People Also Ask

What Is the Minimum Bend Radius of an Optical Fiber?

The minimum bend radius of an optical fiber is defined as the smallest radius to which the fiber can be bent while still maintaining normal transmission of optical signals. In practical terms, it is the minimum curvature radius that the fiber can endure without causing excessive signal loss, modal dispersion,

AEC Active Cable Testing Solution – Deciphering AEC Performance Step by Step

With the continuous expansion of data centers and the increasing demand for high-performance computing, the AEC (Active Electrical Cable) has emerged as an effective high-speed, short-distance transmission solution. Major cloud service providers—such as Google, AWS, and Microsoft—have already embarked on large-scale deployments of AEC, while hardware manufacturers like Nvidia have

Why Do 400G/100G Optical Ports in Switches Require Forward Error Correction (FEC)?

Introduction Optical networks require the use of Forward Error Correction (FEC) to guarantee reliable communication. Similar to how a reader may overlook a single spelling mistake in a text but struggle when errors accumulate, digital transmissions—encoded as sequences of “0”s and “1”s—are subject to inevitable signal attenuation and bit errors.

OCP EMEA 2025: FiberMall’s 1.6T Pluggable Optical Module Based on 224G per Lane

The rapid growth of artificial intelligence (AI) and machine learning has driven a substantial demand for higher bandwidth, making the 224G per lane configuration essential. Enhanced energy efficiency is equally critical in managing the ever-increasing power requirements of data centers. With copper-based transmission reaching its physical limits, optical communication has

New H3C Unveils the S12500AI: A New Generation AI Network Solution Based on the DDC Architecture

Recently, New H3C introduced its groundbreaking lossless network solution and compute cluster switch—the H3C S12500AI—built upon the DDC (Diversity Dynamic-Connectivity) architecture. Tailored to meet the demanding requirements of scenarios involving the interconnection of tens of thousands of compute cards, this solution redefines the network architecture of intelligent computing centers. Performance

Related Articles

800g sr8 and 400g sr4

800G SR8 and 400G SR4 Optical Transceiver Modules Compatibility and Interconnection Test Report

Version Change Log Writer V0 Sample Test Cassie Test Purpose Test Objects:800G OSFP SR8/400G OSFP SR4/400G Q112 SR4. By conducting corresponding tests, the test parameters meet the relevant industry standards, and the test modules can be normally used for Nvidia (Mellanox) MQM9790 switch, Nvidia (Mellanox) ConnectX-7 network card and Nvidia (Mellanox) BlueField-3, laying a foundation for

Read More »
G.652D

What Is the Minimum Bend Radius of an Optical Fiber?

The minimum bend radius of an optical fiber is defined as the smallest radius to which the fiber can be bent while still maintaining normal transmission of optical signals. In practical terms, it is the minimum curvature radius that the fiber can endure without causing excessive signal loss, modal dispersion,

Read More »
the-AEC-market-is-poised-for-rapid-growth-in-the-coming-years

AEC Active Cable Testing Solution – Deciphering AEC Performance Step by Step

With the continuous expansion of data centers and the increasing demand for high-performance computing, the AEC (Active Electrical Cable) has emerged as an effective high-speed, short-distance transmission solution. Major cloud service providers—such as Google, AWS, and Microsoft—have already embarked on large-scale deployments of AEC, while hardware manufacturers like Nvidia have

Read More »
link-speed

OCP EMEA 2025: FiberMall’s 1.6T Pluggable Optical Module Based on 224G per Lane

The rapid growth of artificial intelligence (AI) and machine learning has driven a substantial demand for higher bandwidth, making the 224G per lane configuration essential. Enhanced energy efficiency is equally critical in managing the ever-increasing power requirements of data centers. With copper-based transmission reaching its physical limits, optical communication has

Read More »
DDC

New H3C Unveils the S12500AI: A New Generation AI Network Solution Based on the DDC Architecture

Recently, New H3C introduced its groundbreaking lossless network solution and compute cluster switch—the H3C S12500AI—built upon the DDC (Diversity Dynamic-Connectivity) architecture. Tailored to meet the demanding requirements of scenarios involving the interconnection of tens of thousands of compute cards, this solution redefines the network architecture of intelligent computing centers. Performance

Read More »

Leave a Comment

Scroll to Top